organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

V. Parthasarathi,^a* V. N. Praveen,^a S. Thamotharan,^a L. Vijayalakshmi^a and A Bhaskar^b

^aDepartment of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and ^bDepartment of Chemistry, TUK Arts College, Karanthai, Thanjavur 613 002, India

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.044 wR factor = 0.129 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(4-Hydroxyphenyl)-3-phenylprop-2-en-1-one

In the title molecule, $C_{15}H_{12}O_2$, the carbonyl group is in an *s*-*cis* conformation. The dihedral angle between the planes of the 4-hydroxyphenyl group and the phenyl ring is 34.96 (10)°. Electron conjugation is observed between the central -CH = CH - C(=O) - group and the attached rings. The crystal structure is stabilized by $O-H \cdots O$ -type intermolecular hydrogen bonds.

Comment

It is well known that, in ketones, the carbonyl group plays an important role in the antibacterial activity of chalcones. Earlier crystal structure studies of some of the α , β -unsaturated ketone derivatives (Shanmuga Sundara Raj *et al.*, 1996, 1998) have shown that there are two possible conformational isomers of ketones, one corresponding to the *s*-*cis* and the other to the *s*-*trans* form.

The title compound, (I), assumes an s-cis conformation, as can be seen from the torsion angle C7-C8-C9-O1 of -11.4 (3)°. The dihedral angle between the 4-hydroxyphenyl and phenyl rings is $34.96 (10)^{\circ}$. The central -CH = CHC(=O) group is oriented at angles of 13.04 (19) and $25.19 (14)^{\circ}$ with respect to the phenyl and 4-hydroxyphenyl rings, respectively. The lengths of the C6–C7 [1.468 (3) Å], C7–C8 [1.324 (3) Å], C8–C9 [1.475 (3) Å], C9–O1 [1.241 (2) Å] and C9-C10 [1.468 (3) Å] bonds indicate conjugation. The widening of the bond angle C6-C7-C8 to 126.6 (2)° may be due to the close approach (2.20 Å) of atoms H8 and H5. A slight increase in the bond angle C7-C8-C9 to 122.4 (2) $^{\circ}$ may be attributed to the short intramolecular non-bonded interaction between O1 and H7 (2.49 Å). The unsaturated ketone group is not strictly planar, as is evident from the torsion angles C15-C10-C9-C8 [155.73 (19)°], C10-C9-C8-C7 $[168.50 (2)^{\circ}],$ C9-C8-C7-C6 $[-177.17 (19)^{\circ}]$ and C8-C7-C6-C1 $[170.50 (2)^{\circ}]$. Atoms H7 and H8 are trans to each other. The crystal structure is stabilized by O-H···O-type intermolecular hydrogen bonds (Table 1).

Experimental

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved NaOH (0.22 g) in alcohol solution (100 ml) was treated with 0.5 M 4-hydroxyacetophenone (6.8 g) and stirred well. 0.5 M of benzaldehyde (5.3 g) was added to the solution. Stirring was continued for 2 h. A

Received 28 November 2001 Accepted 11 December 2001 Online 22 December 2001

Figure 1

The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

viscous liquid was obtained when stirring was no longer effective. It was kept in a refrigerator overnight. A yellow crude product was obtained; yield (5.9 g). Compound (I) was recrystallized from rectified spirit.

Crystal data

$C_{15}H_{12}O_2$	Cu $K\alpha$ radiation
$M_r = 224.25$	Cell parameters from 25
Orthorhombic, Pbca	reflections
a = 8.4663 (10) Å	$\theta = 20 - 30^{\circ}$
b = 22.384(2) Å	$\mu = 0.68 \text{ mm}^{-1}$
c = 12.216 (3) Å	T = 293 (2) K
V = 2315.2 (6) Å ³	Rectangular, yellow
Z = 8	$0.30 \times 0.22 \times 0.15 \text{ mm}$
$D_x = 1.287 \text{ Mg m}^{-3}$	
Data collection	
Enraf-Nonius CAD-4	1518 reflections with $I > 2\sigma(I)$
diffractometer	$\theta_{\rm max} = 67.9^{\circ}$
ω –2 θ scans	$h = 0 \rightarrow 10$
Absorption correction: ψ scan	$k = 0 \rightarrow 26$
(North et al., 1968)	$l = -14 \rightarrow 0$
$T_{\min} = 0.822, T_{\max} = 0.905$	2 standard reflections
2107	f

2107	measured	reflections	
2107	independe	ent reflections	

1518 reflections with $I > 2\sigma(I)$
$\theta_{\rm max} = 67.9^{\circ}$
$h = 0 \rightarrow 10$
$k = 0 \rightarrow 26$
$l = -14 \rightarrow 0$
2 standard reflections
frequency: 120 min
intensity decay: negligible

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0493P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.8408P]
$wR(F^2) = 0.129$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2107 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
156 parameters	$\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL9
-	Extinction coefficient: 0.0018 (3)

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$O2-H2A\cdots O1^{i}$	0.82	1.90	2.704 (2)	168
C7-H7···O1	0.93	2.49	2.816 (3)	101

Symmetry code: (i) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

LV thanks the UGC, India, for the award of an FIP fellowship (2000-2001).

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius. Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Shanmuga Sundara Raj, S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1996). Acta Cryst. C52, 3145-3146.
- Shanmuga Sundara Raj, S., Ponnuswamy, M. N., Shanmugam, G. & Nanjundan, S. (1998). Acta Cryst. C56, 541-542.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zsolnai, L (1997). ZORTEP. University of Heidelberg, Germany.